別去賭場了,你永遠贏不了「概率屠宰場」

有一個很有錢的朋友,當天晚上贏了很多錢,請我們很多人去吃了海鮮,那是我第一次吃帝王蟹,很難忘,據說,那頓飯很貴很貴。吃飯的時候,很多人跟他說,贏了就不要再去賭了,他也滿口答應。可是後來,我聽說他不僅輸掉了贏了的錢,還借了朋友都輸掉了。在賭場裡面,贏即是輸,所以如果你的目的是掙錢的話,那還是不要去了比較好,除非你只是把賭博看成是一個不在乎輸贏的遊戲。

賭王何鴻燊接手葡京賭場時,業務蒸蒸日上,但理性的賭王仍然忐忑,請教“賭神”葉漢:“如果這些賭客總是輸,長此以往,他們不來了怎麼辦?”

葉漢笑道:“一次賭徒,一世賭徒,他們擔心的是賭場不在怎麼辦。”

葉漢說的只是心理層面,現代賭場程式方面的設計,比葉漢當年要縝密得多,賭場集中了概率、級數、極限方面的數學經驗。

一個普通賭徒,只要長久賭下去,最終一定會血本無歸,所謂的各種致勝絕技,除了電影裡的周星星,現實裡的周星馳都不信。

賭徒永遠不明白,與自己對賭的不是運氣,也不是莊家,他們是在與狄利克雷、伯努利、高斯、納什、凱利這樣的大師對決數學,贏的勝率能有多大?

1

看得到的是概率,看不見的是陷阱

我們先說一個最簡單的賭博遊戲:賭運氣猜硬幣。

規則是這樣的,擲硬幣,正面贏反面輸,贏了可以拿走一倍的錢,輸了會賠掉本金,你玩不玩?

你可能覺得,唉,這遊戲不錯,公平!恰好運氣也不錯,第一把贏了100塊!

你高興壞了,這時候莊家跟你說,你看你也贏了這麼多,我呢,辛辛苦苦搭個場子,最後什麼都沒撈著,要不這樣,你贏了,就給我留下2%,就算是救濟救濟老哥,給捧捧場!

你一聽,2%,才這麼點,拿去吧,不差錢!好了,這事就這麼定下來了。

然而你做夢都想不到的是:就是這小小的2%,最後卻讓你輸得傾家蕩產、家破人亡。

這小小的2個點的贏的概率貌似不起眼,但配上“大數法則”,就成為了賭場賺錢的利器!“大數法則”是數學家伯努利提出來的,說的是假設n(a)是n次獨立重複實驗中發生a的次數,p是每次實驗發生a的概率,當n足夠大的時候,對任意正數ε,有lim{[|(n(a)/n)| p]<ε}=1,公式這麼複雜,99%的賭徒都看不懂,看不懂沒關係,我們只看結果,最終莊家贏到的錢=0.02*a。

莊家賺的錢最終只跟玩家下注大小有關!這也就是我們常說的“流水”,只要玩家不停地玩,莊家就會不停地賺!而不管玩家是輸是贏,莊家始終是贏的!為什麼賭場有“最小投注額”,因為擴大“流水”才能將利潤最大化!

所以別以為自己有多聰明,你要慶倖自己玩得不夠久而已,十賭九輸正源於此。

2

只要進了賭場,你就是一個窮鬼

我們再進一步,就算雙方的概率均等,你仍然是一個輸家,這裡涉及到“無限財富”和“賭徒輸光定律”,這個定理在現實生活中有許多應用,如“姓氏消亡”“線粒體夏娃假說”,在概率均等的情況下,誰的資本大,誰的贏率高。

你和我對賭,你我各有5塊錢,輸光為止。那麼你贏的概率是50%,輸的概率也是50%。

你和我對賭,你有5塊錢,我有10塊錢,輸光為止,那麼你贏的概率就只有33.3%,而輸的概率有66.7%。

對於小散戶,賭場一般可以認為財富是無限多的,你贏不垮它,它卻能吃了你。在賭場老闆的眼裡,世界只有兩種人:一種現在是窮鬼,一種未來是窮鬼。

3

除了100%贏,任何時候都不應下注

所有的賭場遊戲,幾乎都是對賭徒不公平的遊戲。

但這種不公平並非是莊家出老千,現代賭場光明正大地依靠數學規則賺取利潤,從某種意義上來講,賭場是最透明公開的場所,如果不是這樣,進出賭場不知有多少狂命之徒,何鴻燊早怕九條命都不夠。

讓我們來看看凱利公式的廬山真面目:

f* =(bp-q)/ b

在公式中,各參數意義為:

f* = 應投注的資本比值

p = 獲勝的概率(也就是拋硬幣正面的概率)

q = 失敗的概率,即1 - p(也就是硬幣反面的概率)

b = 賠率,等於期望盈利 ÷可能虧損(也就是盈虧比)

公式上面的分子bp-q代表“贏面”,數學中叫“期望值”

凱利公式不是憑空設想出來的,這個數學模型已經在華爾街得到驗證,除了在賭場被奉為正神,也被稱為“資金管理神器”,是比爾格羅斯等投資大佬的心頭之愛,巴菲特依靠這個公式也賺了不少銀子。

回歸到賭場討論這個公式,根據f = (bp-q) / b公式結論,期望值(bp-q)為負時,賭徒不具備任何優勢,也不應下任何賭注。

這種賭博遊戲,要下負賭注,也就是說你不如自己開個賭場當莊家。

的確,世界上有為數不多的“賭神”,他們當中有資訊理論的發明者香農,數學家愛德華·索普,路徑理論的創始人蒙特卡羅等,他們通過一系列複雜的計算和艱深的數學理論,把某些賭戲的贏率扳回到50%以上,例如21點靠強大的心算能力可以把概率拉上去。

但就憑你讀書時上課打瞌睡輸了只知道倍投翻本的可憐知識,以及九九乘法表的那點算力,還是先老實讀完以下3條準則。

1、期望值(bp-q)為0時,賭局為公平遊戲,這時不應下任何賭注。

2、期望值(bp-q)為負時,賭徒不具備任何優勢,也不應下任何賭注。

3、期望值(bp-q)為正時,這時按照凱利公式投注賺錢最快,風險最小。

其實最終結論只有一個:除了100%贏,任何時候都不應下全部賭注,即使贏的概率高達99.9%。

4

贏得勝利的唯一法則:不賭

沒有誰能說服一個墮落的賭徒,因為這是人格的缺陷。但如果你還是一個具有理性精神的人,別再迷戀所謂的運氣。

賭徒能夠依靠的是祖宗保佑,而賭場後面的大佬是高斯、凱利、伯努利這樣的大神。你怎麼可能贏得了莊家?

論理性,沒有人能比賭場老闆更理性。

論數學,沒有人能比賭場老闆請的專家更精通數學。

論賭本,沒有人能比賭場老闆的本錢更多。

如果你想真正贏得這場賭局,法則只有一個:不賭。

參考來源

喜歡這篇文章嗎?立刻分享出去讓更多人知道~